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Abstract 

The incommensurate modulated structure of BaMnF 4 
has been refined at 210 K and at 100 K using symmetry 
properties of the four-dimensional superspace groups. 
Two main assumptions have been made: orthorhombic 

P2,nb" symmetry (U l qq) and monoclinic symmetry (U A2'~h 1 11/"  

The symmetry of the X-ray diffraction pattern is better 
described with the monoclinic hypothesis assuming a 
twinning of the crystal. Refinement results have 
confirmed this analysis [Rv=4 .51% for 4321 re- 
flections at 100 K (monoclinic), R v = 5.61% for 3844 
reflections at 210 K (monoclinic), R v =  8.1% for 2217 
reflections at 210 K (orthorhombic)]. The modulation is 
coherent with a rigid-body rotation of the MnF 6 
octahedra and a related rectilinear motion of the Ba 
ion. A comparison of the shape and amplitude of the 
modulation waves at both temperatures is discussed. 

Introduction 

The compound BaMnF 4 presents numerous interesting 
physical properties and has been the subject of 
experimental or theoretical studies (Saint-Gr~goire, 
1985; Cox, Shapiro, Cowley, Eibsch/itz & Gug- 
genheim, 1979). It also presents interesting structural 
properties and, in particular, a structural transition at 
250 K from a high-temperature (HT) phase to an 
incommensurate modulated phase which has already 
been widely investigated. The crystal structure of 
BaMnF 4 has been solved at room temperature (Keve, 
Abrahams & Bernstein, 1969): a = 5 . 9 8 4 5 ,  b =  
15.098, c = 4.2216/~, space groupA21am, Z = 4. 

The HT to incommensurate phase transition can be 
observed on the X-ray diffraction pattern; it involves 
the appearance of extra satellite reflections located at 
the positions (+~, +½, +½) of the reciprocal lattice of the 
HT phase, with ~ ~ 0 . 3 9 .  Studies (Cox, Shapiro, 
Nelmes, Ryan, Bleif, Cowley, Eibschfitz & Gug- 
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genheim, 1983; Barth~s-R+gis, Almairac, Saint- 
Gr+goire, Filippini, Steigenberger, Nouet & Gesland, 
1983; Saint-Gr+goire, 1985) have shown a very small 
variation of ~ from 4 to 250 K and all have pointed out 
the absence of lock-in temperature; this is unusual 
behaviour for such modulated compounds. 

As far as structure is concerned, two symmetries 
have been proposed for this modulated phase: 

- orthorhombic symmetry (i) with point group 2mm 
(C2v). The crystal is monodomain and modulated by the 
eight vectors of the star of the wavevector q * =  (+~, 
+0.5, +0.5). 

- monoclinic symmetry with point group 2 (C2). 
Here, two cases have been considered. In the first, (ii), 
we suppose that the modulation is characterized by the 
star of the two wavevectors q~*= (~, 0.5, 0.5) and 
q2* = (~, -0 .5 ,  0.5), for example (Cox et al., 1983); in 
the second, (iii), we suppose that the crystal is the 
juxtaposition of twin domains characterized by one of 
the preceding wavevectors (iii). 

The monoclinic hypothesis is compatible with the 
existence of the magnetoelectric effect (Dvorak, 1975). 
The last one (iii) has recently been confirmed by two 
independent studies which have shown the splitting of 
some of the main reflections, the first by y-ray 
diffraction (Saint-Gr6goire, Almairac, Freund & Ges- 
land, 1986) and the second by high-resolution X-ray 
diffraction (Ryan, 1986). 

The first model for the incommensurate structure 
was proposed by Dvorak & Fousek (1980), and 
involves the rotation of the M n - F  6 octahedra of the 
structure about the a axis. 

In the present paper, we describe the symmetry 
properties of the incommensurate phase in the (3 + 
d)-dimensional formalism developed by de Wolff, 
Janssen & Janner (1981). 

We have studied and refined this structure using the 
expression of the structure factor derived by Yamamoto 
(1982a). In a previous paper, we gave preliminary 
results using data recorded at 100 K containing only 
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first-order satellites and we restricted our analysis to the 
apparent orthorhombic symmetry (i) (Sciau, Grebille, 
B6rar & Lapasset, 1986). In the present paper, we show 
that a more complete analysis of the X-ray diffraction 
pattern (extinction rules of the second-order satellites) 
allows confirmation of the splitting of the crystal into 
two types of monoclinic twin domains [hypothesis (iii)]. 
It is then possible to determine the structure of one 
domain and the relative ratio of each domain in the 
whole crystal. This study has been carried out at two 
different temperatures (100 and 210 K). 

Experimental 

Intensity measurements were performed using a 
spherical crystal (radius 0.105 mm) provided by Dr 
Gabbe (MIT). They have been obtained on an 
Enraf-Nonius CAD-3 diffractometer (graphite-mono- 
chromated MoK~ radiation) at 100 and 210 K. The 
crystal was cooled by a stream of nitrogen gas (stability 
+2 K). At both temperatures, the crystal was kept at a 
stabilized temperature over the whole period of data 
collection to avoid hysteresis phenomena and fluctua- 
tions of the relative domain ratio during the phase 
transition (over 250 K). The crystal was brought to 
room temperature between data collections at 100 and 
210K. 

The cell parameters are: a = 6.01 (1), b = 15.16 (3), 
e = 4 . 2 2  (1)A at 210K and a = 6 . 0 1 ,  b =  15.13 (3), 
e = 4.22 (1) ]k at 100 K (using 20 reflections with 
13°<  8 <  40°). The incommensurate component of 
the modulation has been assumed to be 0.395 (at 
210K) and 0.399 (at 100K). 6118 and 5333 reflec- 
tions were measured with (sinS)max/2=0.71A-1; 
0 < h  < 9, - 2 2  < k < 22, 0 < l_< 6, - 2  < m < 2, using 
a 0--28 scan technique (scan width: 1.2 ° + 0.25 tg0). 
After averaging of equivalent reflections, 3844 (669 
main reflections, 2476 first-order and 699 second-order 
satellites) and 4321 (657 main reflections, 2567 
first-order and 1097 second-order satellites) with 
I > 30(/) were retained respectively at 210 and 100 K. 
About 800 third-order satellites were also measured 
with 10°<  0<  15 ° , but there were too few with 
I > 3a(/) to be included in the data collection for 
refinement. Lorentz-polarization and absorption 
corrections were applied ( g =  15.05 mm-~; Escande, 
1971). Three standard reflections (one main reflection, 
and two first-order satellites which did not belong to the 
same domain) were measured every 40 reflections. No 
significant fluctuation of their intensity was observed. 

X-ray diffraction pattern and symmetry 

The diffraction pattern of the incommensurate phase is 
similar to that of the HT phase (T > 250 K) as far as 
the main reflections are concerned. However, one can 
also observe weaker satellite reflections located at (+~, 

+½, +½) from the Bragg reflections (Fig. 1). The 
variation of C as a function of temperature has been 
widely studied (Cox et al., 1983; Barth~s-R~gis et al., 
1983); when cooling from 250 to 4 K, ~ increases 
continuously from about 0.390 to a value belonging in 
the range 0.392-0.399, according to the sample. The 
respective values of C at 100 and 210 K for our sample 
are 0.399 and 0.395. 

All reflections can apparently be indexed by four 
integers: 

S = ha* + kb* + lc* + mq*, (1) 

with (a*, b*, c*) basic vectors of the HT reciprocal 
space and q* = Ca* + (b*/2) + (c*/2). Satellites can 
easily be observed up to the second order (m = + 1, + 2). 

Let us first consider the case of an orthorhombic 
monodomain crystal (i). 

If we try to associate each satellite reflection with a 
Bragg reflection of the HT structure, there are eight 
first-order satellites around each Bragg node (Fig. 1). 
Then, if we take into account the HT A centring, we 
have to introduce three independent modulation vec- 
tors, for example: 

q ,*=  Ca* + (b*/2)+ (c*/2) 
q2* = Ca* + (b* /2 ) -  (c*/2) 
q3* - -  Ca* - -  ( b * / 2 )  + ( c * / 2 )  

and we can write a six-dimensional indexing relation: 

S = ha* + kb* + lc* + mlql* + m2q2* + m3q3* (2) 

with the centring extinction rule: 

h, k, l, m 1, m2, m3: k + l = 2n 

In this case, there is no reason to constrain the y and 
z components of the wavevector q* to ½. As no variation 

b" 

oT1 ~ oi 

' q S F qs 

Fig. 1. Diffraction pattern of  the incommensurate  phase of  BaMnF 4. 
• Mean reflections, o first-order satellites, • second-order 
satellites. 
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of these components has been observed, we have not 
retained this six-dimensional hypothesis. 

Now, we can also describe the structure with only 
one modulation vector, as in (1), but the general 
extinction rule k + l = 2n is not verified by first-order 
satellites. We must conclude that the basic structure 
lattice is primitive; the four-dimensional Bravais class is 
uPmmm with WJJ notations (de Wolff et al., 1981). T l l  
According to the recent WPV classification of the 
mono-incommensurate point groups (Weigel, Veysseyre 
& Phan, 1984; Veysseyre, Phan & Weigel, 1985; 
Veysseyre & Weigel, 1987), it belongs to the system 
orthogonal parallelogram rectangle (point group 
2,m,m). Refinement of the structure at 100 K in this 
hypothesis has already been achieved (Sciau et al., 
1986) and results are in good agreement with the space 
group lTe21nb 

t.. l qq or F(2,3,4) 2a,ma+~c+d)/4,m~o+a~/4 in WPV 
notations. 

In such a group, and according to the cell transfor- 
mation A = a, B = 2b, C = 2c which allows elimination 
of the rational components of the wavevector, the 
pattern has to obey the following extinction rules: 

H K L m :  K + m = 2n centring U or F(2,3,4) 
L + m =  2n'  

H O L m :  2 H  + L + m = 4n mirror  plane (n) or m.+..+a~, 4 
H K O m :  K + m = 4n mirror  plane (b) or m~b+d~, 4 
HOOm: H = 2n axis (2 0 or 2 a. 

Unfortunately, these are not verified by second-order 
satellites; for each, there are a few weak reflections 
which are significatively non-zero and transgress the 
rules. Moreover, from our measurements the systematic 
extinction of the following lines can be shown: 

hklO: k + l =  2n + 1 
hkl+2: k + l = 2 n +  1; 

this is not explained in our last hypothesis. 
We have now to consider a lower symmetry: the 

monoclinic one. 
We suppose that the eight satellites around each 

Bragg node are the juxtaposition of two groups of four 
satellites: +tx~ ~ and + ~ 1 _~,,~,~/ _(~,-~,-~)  for the first group, 
+ 1 1 _{_¢.~ 1 I$ (~,-~,~) and for the second (Fig. 1). We - -  - -  k ~ , ~ , - - ' ~ !  

could here suppose two independent modulation vectors 
(ii), but this would not explain the observed splitting of 
the main reflections along b* (Saint-Gr~goire et al., 
1986; Ryan, 1986), and so we retain only the 
hypothesis (iii). Each group corresponds to a twin 
domain and the crystal is composed of two twin 
domains of monoclinic symmetry, with the unique axis 
along a and with an angle very close to 90 °. The mirror 
planes my and m~ are now pseudosymmetry operations 
and each domain is related to the other by these 
symmetry operations. 

In such an hypothesis, all reflections can be indexed 
with a unique modulation vector and the pattern is 
compatible with an A-centred lattice (space group 
A2111). The transformation 

a' = a, b' = (b + e)/2, e ' =  ( b -  e) /2 

gives an equivalent primitive lattice (space group P21) 
l h t ~  and the modulation vector is q*=  Ca'* + ~.. 

(a'*,b'*,c'*: basic reciprocal vectors). 
This can be written q*= qi*+ qr* with qi*= Ca'* 

and qr*= ½b'*. The four-dimensional Bravais class is 
Be~/-~ (W J J) or diorthogonal parallelograms S(2,4) 2_1_2 
(WPV), and superspace group BP~ ' (WJJ) or S(2,4)2 a 
(wPv). 

In order to maintain compatibility with the previous 
orthorhombic descriptions and with the HT cell, and to 
permit easy indexing in the pseudo-orthorhombic 
symmetry, we have chosen to keep the orthorhombic 

/.]-A 2t I I cell (A, B, C). The superspace group is now ,., ~11 
(W J J) or F(2,3,4) 2 a (WPV) and the extinction 
conditions for a domain are: 

H K L M :  K + M =  2n 

L + M = 2n'  centring (e4, B), (e 4, C), (B, C) 
(K + L = 2n" )  
K + L + 2M = 4n A centring (k + / =  2n) 

HOOM: H = 2n axis (2 0 or 2 a. 

These new conditions are now quite satisfactory to 
describe the diffraction pattern; they are verified by all 
the reflections and do not omit any other extinction of 
the pattern. Thus, they will be retained as the basis of 
the present structure refinement. 

Structure refinement 

The space group of the average structure in its 
monoclinic symmetry is A2~ll, using the pseudo- 
orthorhombic setting of the axes. 

The displacive modulation u" of the gth atom can be 
defined by the atomic displacement coordinates u~' from 
the average positions x~'. 

u~' = x~' -- x~' (i = 1, 3) (3) 

These displacements are periodic functions of the 
variable x~' = q.x"+ t, where t is a phase variable. 
Following Yamamoto (1982a), these can be written by 
their Fourier series: 

u~'(x~) = {A~icos(2nnx~) + B~isin(2nnx~)}, (4) 

where n is the order of the Fourier term, and A ~i and B~i 
are the Fourier amplitudes. 

There are six independent atoms in genera/positions 
and, consequently, 18 independent positional 
parameters for the average structure (x~'), and 36 
independent parameters of the Fourier amplitudes for 
each order of harmonics of modulation in the preceding 
development (4), (A"ni, BUni) . As temperature B factors 
have not been modulated, there are respectively 6 and 
36 independent parameters for the isotropic and 
anisotropic temperature factors. 

The least-squares program R E M O S  (Yamamoto, 
1982b) has been used for the refinement. It calculates 
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Table 1. RFfactors (%) for  the monoclinic hypothesis 
(100K and 210K) and for  the orthorhombic 

hypothesis (210 K) 
. A2nll .A2~II . P2~nb 

Space group u 1 11 u 1 11 u I qq 
Temperature  100 K 210 K 210 K 
Fourier  terms 1,2" 1,2" 1,2" 

m = 0 3.0 [657Vf 3.2 [6691 3.8 [4041 ( 
R ¢ }  m = + l  4.9 [25671 7.2 [24761 8.1 [1316] 

m = +2 8.2 [1097] 16.7 [699] 41.7 [4971 
All 4.51 [43211 5.61 [38441 8.1 [2217] 

Independent  126 126 125 
parameters  

* The anisotropic temperature factors have been refined for 
reflections with 0-38 _< (sin0)/2 < 0.71 /k -~ (3572 at 100 K and 
3183 at 210 K). 

t The numbers of reflections are given in square brackets. 
Reflections HKLM and HffiLM are equivalent in the orthorhombic 
hypothesis. 

the structure factors using the preceding four- 
dimensional analysis and minimizes the reliability factor 
wR: 

wR = ~iwi(IFoil - I F c i l ) 2 / ~ . i w i l F o i  12, (5) 

in which w i is a weight factor, and Foi and Fci are the 
observed and calculated structure factors. Unit weights 
have been used for all reflections. The atomic scattering 
factors have been taken from International Tables for  
X-ray Crystallography (1974). 

The program can take into account twinning of the 
crystal. The relative ratio between the twin volumes is a 
new refinement parameter. In the present study, we 
have considered incoherent twin domains, i.e. the 
observed intensity of a diffraction line is the summation 
of the intensities relative to each domain. But it was 
practically impossible to take into account simul- 
taneously this twinning and a secondary-extinction 
correction. 

Refinement of temperature factors was very sensitive 
and difficult because of strong correlations with each 
other and with modulation parameters. This is why it 
would be meaningless to try to modulate them. When 
refined with all the observed reflections [(sin0)/2 < 
0.71/k-l] ,  they became physically non-significant. This 
can be explained by the influence of intense peaks 
with lower values of 0, for which no secondary- 
extinction correction could be calculated. After several 
trials, we have obtained reasonable values when 
eliminating reflections with (sin0)/2 < 0.38 A -1, They 
were then constrained to these values for the final 
refinement. 

Another difficulty has been outlined and concerns 
correction of temperature Debye-Waller factors for 
phase fluctuations (Axe, 1980; Adlhart, 1982; Pacio- 
rek & Kucharczyk, 1985). It has been shown that the 
presence of phase propagation waves involves a 
lowering of the intensity of the higher-order satellites. 
Effectively, our results have shown that the calculated 

Table 2. Final parameters at 100 and 210 K in the 
A 2 ] I  space group ,,~ 1 11 (cell A, B, C) 

(a) Positional parameters  (x 104) 
Average position A ~ B~ A ~ B 2 

At 100 K 
Ba x, 4480* 128t 211 (1) -23  (I) 46 (2) 

x 2 1724-6 (1) 38.3 (3) 49.5 (3) 2.7 (4) 25.3 (2) 
x 3 2503 (1) - 9  (1) - 4  (1) 13 (2) - 9  (2) 

Mn x~ -51 (2) -21 (3) -17  (3) - 4  (3) 26 (3) 
x~ 2080.8 (3) 3.5 (5) -5 .3  (5) 17.3 (5) 2 (5) 
x 3 42(3) 40(2) 17(2) 2(5) - l l  (4) 

F(1) xj 1962 (7) 7(10) -31 ( l l )  -7 (12)  49(12) 
x 2 1497 (2) I 1 (2) - 7  (2) 16 (2) 5 (2) 
x 3 31 (10) 95 (8) 205 (7) 36 (14) -33  (16) 

F(2) xt 7195 (7) -89(11)  26(10) -28(11)  43(12) 
x 2 1685 (2) 43 (2) - 1 0  (2) 20 (2) 4 (3) 
x 3 -16  (9) -62 (8 )  -139 (8) -18  (15) 3(15) 

F(3) x~ 3346(7) -87(11)  - 1 8 ( I 0 )  -37(12)  21(12) 
x~ 2320 (2) 13 (3) - 5  (2) 21 (2) 7 (2) 
x 3 -27  ( l l )  -269(8)  -124 (8) -25  (18) 44 (18) 

F(4) x~ 214 (8) 322(12) 114 (12) -46  (14) 43 (16) 
x~ 2111 (2) 43(3) 106(2) 20(3) - 8 ( 3 )  
x 3 2487 (9) 26 (9) 8 (9) - 3  (15) - 2  (14) 

At 210 K 
Ba x~ 4480* 128"I" 141 (2) - 2  (2) 38 (3) 

x z 1722.7 (2) 35.6 (4) 30.5 (4) 4.6 (4) 12-7 (3) 
x 3 2504(2) - 9 ( I )  - 2 ( 1 )  6(2) - l l  (2) 

Mn x~ -50  (2) -14  (3) - 1 0  (3) 3 (5) 7 (5) 
x 2 2080.6 (3) 1.6 (6) -4 .9  (5) 6.6 (7) -1 .5  (7) 
x 3 15 (5) 32 (2) 5 (2) 13 (6) - 22  (5) 

F(1) xj 1976(7) 1(10) -19(11)  7(18) -3 (18)  
x 2 1500 (2) 6 (2) - 6  (2) 4 (3) - 3  (3) 
x 3 73 (10) 97 (9) 129 (8) 15 (17) -52  (17) 

F(2) x~ 7213(8) -61(13)  13(12) -10(18)  28(18) 
x~ 1680(2) 27(3) -11 (3) II (3) - I  (3) 
x 3 -56  (10) -68  (9) -96  (9) -22  (17) 21 (16) 

F(3) x t 3347(8) -56(13)  13(12) -4 (20)  -15(22)  
x 2 2319 (2) 7 (3) -12  (3) 10 (3) 3 (3) 
x 3 -34(12)  -237(10)  -71 (10) 15(22) 73(18) 

F(4) x, 245 (10) 248 (15) 60 (16) -83  (24) 15 (30) 
x 2 2110 (2) 48 (4) 79 (3) 6 (4) -13  (5) 
x 3 2518 (13) 18 (12) 9 (I0) -41 (20) -46  (20) 

(b) Equivalent isotropic temperature factors (A 2) 
100 K 210 K 100 K 210 K 

Ba 0.46 (1) 0.79 (2) F(2) 0.73 (7) 0.93 (9) 
Mn 0.34 (2) 0.51 (2) F(3) 0-74 (7) 1.17 (9) 
F(1) 0.55 (7) 0-68 (8) F(4) 1.14 (8) 2. I (1) 

* Fixed to define the cell origin along the polar axis. 
t Fixed to define the phase origin. 

values of the intensities of the second-order satellites are 
generally higher than the observed ones. We have tried 
a phason correction but this did not improve our 
results. This systematic misfit on second-order satellites 
seems to be correlated more with refinement difficulties 
and with the fact that we did not take into account 
modulation harmonics and satellites of higher order. 
Satellites up to the third order have been observed, 
which would tend to prove that a phason correction 
should in any case be weak. 

Results 
ITA2jlI~ The R factors at 100 and 210 K (space group ,~ i i11 

are given in Table 1 and final refinement parameters are 
in Table 2. For comparison, R factors at 210K for 
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1 TP2~nb'~ orthorhombic symmetry (space group v ~qq/ are also 
given in Table 1.* 

For an equivalent number of independent refinement 
parameters, the R factors are better in the monoclinic 
description. This is particularly true for the R factor 
calculated with only second-order satellites (m = +2). 
These results clearly confirm our choice of monoclinic 
symmetry. 

It can be noted here that the R factors for m = +2 
are rather large, and still larger at 210 K for 699 
reflections than at 100 K for 1097 reflections. This has 
to be related to an experimental fact: intensities of these 
satellite reflections are much weaker than those of the 
first-order satellites at the same temperature, or weaker 
at 210 K than at 100 K. Consequently, for the same 
absolute average discrepancy between observed and 
calculated structure factors, the reliability factor will be 
higher. 

It is interesting now to compare the results obtained 
at both temperatures" R factors are better at 100 K 
than at 210 K and this with a higher number of satellite 
reflections. They are measured better, not only because 
of the weakening of thermal vibration, but also because 
of their higher intensity, related to the evolution of the 
modulation. This is in agreement with the classical 
model of evolution of the modulated structures, which 
predicts an increase of the amplitude of modulation 
when cooling the sample. 

We have tried to check another general property 
predicted by the theory" the shape of the modulation 
wave is smooth and purely harmonic just below the HT 
transition and splits and progressively shows gaps when 
cooling. The modulation function becomes near a 
Heaviside function and its Fourier series should present 
only odd terms. Thus we have tried to introduce 
third-order Fourier terms into our refinement. Third- 
order measured satellites were too few or too weak to 
be significant in the calculation, but it can be shown 
that an important amplitude of the third-order Fourier 
terms will influence the other intensities and particularly 
those of the second-order satellites. Results are sum- 
marized in Tables 3 and 4. Unexpectedly, there was no 
significant improvement and, in any case, second-order 
Fourier terms are always necessary for good agree- 
ment. Odd-order Fourier terms only are not sufficient to 
describe the modulation and, when keeping second- 
order satellites, there is no significant change of the 
refinement parameters as can be seen in Table 4. For 
the displacement of Ba, for example, Fourier terms A 3 
and B 3 remain very weak. In contrast, we only observe 
important second-order terms in relation to important 

* Lists of  s tructure factors  and anisotropic thermal  paramete rs  
have  been deposited with the British Library  Documen t  Supply 
Centre  as Supplementary  Publication No. SUP 44477 (86 pp.). 
Copies  m a y  be obtained through The Executive Secretary,  
International  Union of  Crys ta l lography,  5 Abbey  Square, Chester  
CH1  2HU,  England. 

Table 3. R r factors (%) as a function of the order of 
refined Fourier terms 

210K l o o K  

Fourier terms 1,3 1,2,3 1,3 1,2,3 
m = 0 3.7 3.1 5.8 3.0 

) m = _+1 10.3 7.1 12.7 4.8 
Rr m = +2 29.5 16-3 36-9 7.4 

.All 8.1 5.5 12-6 4.4 

Independent 126 162 126 162 
parameters 

Table 4. Ba positional parameters (×104) along the 
direction of important displacement 

(I) Refinement to the second-order Fourier term. 
(2) Refinement to the third-order Fourier term. 

Average 
position 

At 210 K 
XI |1) 
Xl (21 

XI 

X 2 

At 100K 
X I 

XI 

X 2 

X 2 

Ai Bi 

4480* 1285" 141 (2) 
4480* 128"I" 141 (2) 
1722-7 (2) 35.6 (4) 30.5 (4) 
1722.6 (2) 35.6 (3) 30.5 (4) 

A2 B2 A3 B3 

-2 (2) 38 (3) 
0(2) 42(3) 21 (57 -17(6) 
4.6 (4) 12.7 (3) 
5.2(4) 13.1 (3) 2(I) 0(2) 

4480* 128t 211 (1) -23 (I) 46 (2) 
4480* 128+ 211 (1) -23 (1) 46 (2) 19 (3) 1 (3) 
1724.5(1) 38.3 (3) 49.5 (3) 2.7 (4) 25.3 (2) 
1724.5(1) 38.3(3) 49.4(3) 3.3(4) 25.4(2) 0(I) I(1) 

* Fixed to define the cell origin along the polar axis. 
5" Fixed to define the phase origin. 

first-order terms and the ratio between these respective 
terms remains about the same at both temperatures. 
Consequently, we could not conclude that there was 
significant evolution of the modulation function shape 
to the Heaviside function from 210 to 100K. This 
function appears to be a pure harmonic function 
corrected by asymmetrical second-order harmonics. 
This result is not incompatible with the presence of 
discontinuities of the modulation function or with the 
presence of discommensurations in the crystal, but 
outlines an asymmetry of the amplitude of modulation 
in the range of the microdomains between two eventual 
discommensurations. From our present results, we 
cannot draw any further conclusion concerning the 
characterization of these discommensurations or the 
presence of crystal faults in relation to these dis- 
commensurations or with the low-temperature variation 
of~. 

Discussion 

One of the refinement parameters is the relative 
ratio of the volumes of the two monoclinic twin 
domains of the crystal. It has been refined to 42% at 
210K and to 52% at 100 K. These proportions are 
nearly equivalent to the ratio of 50% and are thus 
compatible with the apparent orthorhombic symmetry 
of the pattern, as far as reflections from each domain 
are almost equivalent in intensity and indistinguishable 
in position. The tiny discrepancy between the two 
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refinements can be explained by thermal history: the 
sample has been brought again to room temperature in 
the HT phase between both data collections, and so it 
has recovered its fundamental orthorhombic symmetry.  
After this relaxation, and when cooling again below 
250 K, the sample is likely to divide itself into two twin 
domains with another twin ratio. It would be interesting 
to study here the influence of an oriented strain 
distribution applied to the crystal during its ortho- 
rhombic-monoclinic phase transition on the related 
intensities of each twin domain. 

The two types of domains are related to each other 
by a mirror plane, my. If we neglect the elastic strain of 
the cell (ct ~ 90.08°),  their relative structures differ only 
by the orientations of their wavevectors q*. This 
structure is drawn schematically for one domain in 
Figs. 2, 3 and 4. The atomic displacements are very 
similar at 100 and 210 K, as can be seen for example 
for the Ba displacements along x~ and x 2 in Fig. 2. 
When considered together, they are consistent with a 
rigid-body rotation of the MnF 6 octahedra, around an 
axis parallel to their edges, F (1) -F(2) ,  F (3 ) -F (3 )  i. This 
movement is coupled with a motion of the Ba ions in the 
plane (x v x2), following the motion of the nearest F(4) 
ion (Fig. 3). As can be seen in Fig. 3, the x~ and x 2 
displacements have the same phase and we can 
conclude that there is a linear movement of the Ba ions. 
One can also point out the similarity of the two curves 
at 100 and 210 K, obtained with two independent 
measurements and refinements. 

Interatomic distances are listed in Table 5 and drawn 
schematically in Fig. 5 for B a - F  species, as a function 
of the phase variable t. Their average values are 
compatible with those of the HT phase. Let us first 
consider the distances Mn--F and F - F  which charac- 
terize the deformation of the MnF 6 octahedra: their 
variations in the modulated structure are weak (respec- 

tively 2 and 5% for M n - F  and F - F  distances). They 
are clearly smaller than the absolute displacements of 
the corresponding atoms and remain in the range of 
their standard deviations; this clearly confirms the 
hypothesis of a rigid-body motion of the octahedra. 
These conclusions are still true for the refinement at 
100 K, for which the amplitudes of the modulation 
functions are larger, and standard deviations are 
smaller; i.e. the variations of the interatomic distances 
seem to be related to the accuracy of the refined 
positional parameters. Nevertheless, one can notice a 
weak deformation of the octahedra due to the motion of 
the F(2) atom. If we consider now the B a - F  distances 
(Fig. 5), we clearly see that there is no significant 
variation of the shorter distances [Ba-F(1) ,  B a - F ( 1 )  iii, 
Ba -F(4 ) ,  Ba-F(3) ] ;  i.e. the neighbouring atoms move 
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Cell 2 ~ ' ~ ~  

Cell 3 ~ )__eo 

B 

or- 

i i 

f i 

-,@,- 
I i -@- 
i t 
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Fig. 3. Schematic representation of the projection of a slab of 
octahedra along the A direction over four cells (displacement 
xl.5): oBa, x3=); o Ba, x 3 =-~.  
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Fig. 2. Ba displacements (/~) (a) along x I and (b) along x 2 as a function ofx~ at 100 and 210 K. 
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in phase. On the other hand, the larger distances 
[Ba-F(4) iv, Ba--F(2) iv and Ba-F(3)  v] present varia- 
tions which are about twice the corresponding atomic 
displacements, and which can be explained by relative 
motions in opposition of phase. 

The rotation of the MnF 6 octahedra which is involved 
is compatible with a compacting of the HT structure 
along the x~ and x2 directions, which is in good 
agreement with the evolution of the cell parameters as a 
function of temperature (Cox et al., 1979). 

(a) 

I I = B • v 

• I I • 

q ) ~ •  ~ ~  ~ ........ 

0 / 
C 

(b) 

Fig. 4. Schematic representation of the projection along the A 
direction of two neighbouring slabs (a)'m space group u" rP21~qqnb i;lllU^-"l 

(b) in space group U A ~' lllr 

C o n c l u s i o n  

An important result of the present study of the structure 
of BaMnF 4 is the very good agreement of the harmonic 
model of modulation with the atomic displacement 
functions. Harmonics up to second order are necessary 
and adequate to obtain a very satisfactory agreement. 
The physical significance of these terms is proved: 

- from a comparison of and the analogy between the 
results of independent measurements and refinements at 
210 and 100 K. 

- from a consideration of the interatomic distances 
which are constant within the range of their standard 
deviations, for neighbouring species, both at 100 K and 
at 210 K, and which are comparable to those of the HT 
phase. The constancy of these interatomic distances as 
a function of the phase of the modulation shows that 
the atomic displacements are compatible with a 
rigid-body motion of the MnF 6 octahedra. This motion 
can be approximated by a rotation around the A axis. 

The only significant difference between both 
modulated structures at 100 and 210 K concerns the 
amplitude of the displacements, which increase at low 
temperature. As far as the shape of the modulation 
wave is concerned, we could not show any significant 
evolution. The relative influence of first- or second- 
order terms in the Fourier series is the same, and 
introduction of higher-order terms did not really 
improve the reliability, as we could expect for a less 
harmonic function. An initial explanation could be that 
we have not enough high-order satellites to refine 
higher-order terms of the Fourier series and, to confirm 
our results, it would be good to have another data 

Distance 
(A) , I J ' l 

4"0 ~ 1  F(3) v 

~ F(4) iv 

3"0 F(3) 

~ ~ , ~  F( 1 )iii 

2 . 5 F  I i ~ = ~ = ~ ~ ~ ' ~  F(1) 

0"2 0"4 0"6 0"8 t 
(a) 

Distance 
(A) / ' ' , , 

F(3) v 

4"0 

3"5 

F(2) i" 
F(4) iv 

3"0 . F(3) 

F(4) 
FF~I )iii 

2"5 
0"2 0"4 0"6 0"8 t 

(b) 

Fig. 5. B a--F interatomic distances as a function of the phase variable at (a) 210 K and (b) 100 K (t = ~ - ¢~'). 
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Table 5. Interatomic distances (A) at 100 and 210 K 

Average M a x i m a l  Minimal Variation 
At 100 K 
Mn-F(I)  2.15 (5) 2.15 2.13 0-02 
Mn -F(2) 2-00 (5) 2.05 1.94 0. I I 
Mn-F(3) 2.18 (8) 2.20 2.15 0.05 
Mn-F(3) ~ 2.06 (8) 2.09 2-05 0.04 
Mn-F(4) 2.09 (7) 2-13 2-07 0.06 
Mn -F(4) i~ 2.18 (7) 2-22 2.14 0.08 

F(I)-F(2) 2.87 (14) 2.96 2.79 0.18 
F(I)-F(3) 2.64 (13) 2.67 2.61 0.06 
F(I)-F(4) 2.99 (17) 3-08 2.90 0.18 
F(I) -F(4) ji 3-04 (17) 3.14 2.97 0.17 
F(2)-F(3) * 3-09 (19) 3-21 2-96 0.25 
F(2)-F(4) 3-04 (19) 3.22 2.88 0.34 
F(2)-F(4)" 3.05 (19) 3.24 2.93 0.31 
F(3) -F(3) ~ 3.20 (18) 3.30 3.13 0-17 
F(3)--F(4) 2.93 (18) 2.97 2.86 0-11 
F(3) - F(4)" 2.97 (18) 3.08 2.85 0-23 
F(3) ~ F(4) 2.94 (18) 2-98 2.91 0.07 
F(3) ~ - FOP 2.99 (18) 3.07 2.87 0.20 

Ba-F(I) 2.68 (7) 2-74 2.63 0. I 1 
Ba-F(I) ~" 2.65 (7) 2.70 2.62 0.08 
Ba-F(2) j" 3.05 (8) 3.52 2.79 0.73 
Ba-F(3) 2-88 (7) 3.09 2.73 0.36 
Ba-F(3) ~ 4-26 (10) 4.52 3.87 0.65 
Ba.-F(4) 2.82 (6) 3.02 2.67 0.35 
Ba-F(4) ~" 3.56 (8) 4-06 3-05 1.01 

A t 2 1 0 K  
Mn -F(1) 2.14 (6) 2-16 2.13 0.03 
Mn-F(2) 2.05 (6) 2-09 2.01 0.08 
Mn-F(3) 2.17 (9) 2.20 2.16 0.04 
Mn-F(3) i 2.07 (9) 2-08 2.04 0-04 
Mn--F(4) 2.13 (10) 2.20 2.08 0.12 
Mn-F(4)" 2.13 (10) 2.20 2.07 0-13 

F(I)-F(2) 2.93 (15) 2.99 2.87 0.12 
F(I)-F(3) 2.63 (14) 2.67 2.60 0.07 
F(I)-F(4) 2.97 (18) 3.06 2-91 0.15 
F( I )--F(4)" 3-04 (18) 3.11 2.94 0.17 
F(2)-F(3) ~ 3.12 (21) 3.22 3.00 0.20 
F(2)-F(4) 3-13 (21) 3.27 2.93 0.34 
F(2)--F(4) ii 3.05 (18) 3.20 2.94 0-40 
F(3)-F(3) ~ 3.21 (20) 3.25 3.14 0-11 
F(3)-F(4) 2-93 (20) 3.03 2.86 0.17 
F(3)-F(4)" 2.98 (20) 3. I I 2.85 0.26 
F(3)LF(4) 2.96 (20) 3.07 2.88 0.19 
F(3)I-F(4)" 2-98 (20) 3.10 2.86 0.24 

Ba-F(1) 2.64 (8) 2-69 2.56 0-I I 
Ba-F(I) "i 2.66 (8) 2.72 2.62 0.10 
Ba-F(2) H~ 3.06 (8) 2.86 3.40 0.54 
Ba-F(3) 2-89 (9) 3.05 2.76 0.29 
Ba--F(3) ~ 4-27 (10) 4.48 3.98 0.50 
Ba-F(4) 2-81 (9) 2.94 2-66 0.28 
Ba-F(4) ~v 3.57 (I 1) 3.98 3.18 0.80 

Symmetry codes: (i) x t -  ½, ½ - x  z, - x  3, x4+½; (ii) x~, x z, ½-x  3, x , - ½ ;  (iii) 
x,-½, ~-x2, ¼-x3, x,; (iv)x,+½, ½-x,, ½-x3, x,; (v)x,+½, ½-x2, l-x3, 
X4+ ½. 

collection with a more intense source, in order to 
measure third- or even fourth-order satellites. Never- 
theless, as has been explained above, second-order 
terms are refined with real accuracy and significance, 
and they seem to prove a real asymmetry of the 
modulation wave. This asymmetry is correlated with 
asymmetrical displacements in the structure on both 
sides of the average positions. 

The analogy of the shapes of the modulation 
functions at I00 and 210 K can be correlated with the 
abnormal behaviour of BaMnF 4 with regard to the 
theoretical model of a progressive locking of the 
modulation to a commensurate superstructure coupled 
with a 'squaring' of the modulation function. In our 
case, no lock-in transition has been observed and the 
variation of the q* vector is very weak over a large 

temperature range. Thus, there is no reason here to 
expect any evolution towards a locked phase. 

We have clearly confirmed in the present study the 
monoclinic hypothesis of the structure which explains 
very well the X-ray diffraction pattern symmetry. 
Nevertheless a comparison can be made with the 
orthorhombic description. The two descriptions have 
the same atomic refinement parameters and after 
refinement (with the measurements of 210K),  their 

[[TA2~ 111 values are quite similar. The two space groups ~,., 11 
rTP2,,ba have half their symmetry operations in and , ~  1 qql 

common and these operations generate all the atoms of 
one layer from the independent atoms. The others 
describe the passage of this layer to the nearest one. In 
the monoclinic description, this transformation is given 

11 by a pure translation (I/0,~,~,0), and in the ortho- 
i l l  rhombic one by a glide mirror (mz/O,~,~,]) which couples 

a mirror operation to a dephasing of the modulation. 
So, in the first case, all the octahedra layers are 
rigorously equivalent, which is not true in the second. 
Nevertheless, when we take into account the specific 
atomic positions of this structure, the new atomic 
positions generated by the glide mirror are nearly the 
translated positions, as can be seen in Fig. 4, and this 
explains the rather good agreement obtained in the first 
study. We have now concluded that two types of 
macrodomains related by an my mirror are present and 
we have given their relative volume ratio which is likely 
to depend on the phase-transition conditions. 
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Abstract 

The crystal structures of monoclinic ZrO2 [P21/c, 
a = 5 . 1 5 0 5 ( 1 ) ,  b = 5 . 2 1 1 6 ( 1 ) ,  c =  5.3173 (1) /~, fl 
= 9 9 . 2 3 0 ( 1 )  ° , V = 1 4 0 . 8 8  (1) A 3, Z = 4 ,  Rwp= 
0.047], tetragonal Zr0.935Y0.o650~.96 s [P42/nmc, a=  
3.6055(1), c=5 .1797(2)A,  V=67 .33(1)A a, Z = 2 ,  
Rwp=0.090] and cubic Zro.s75Mg0.125Ov875 [Fm3m, 
a=5 .0858(1) . /k ,  V =  131.55(1),/k 3, Z = 4 ,  Rwp= 
0.083] have been refined by Rietveld analysis of 
1.377 A neutron powder diffraction data collected at 
295 K. In both tetragonal and cubic ZrO2, the stabilizer 
atoms randomly occupy the Zr site and charge balance 
is achieved by an appropriate number of vacancies on 
the O site. In cubic ZrO 2, the anions are displaced from 
their ideal fluorite positions by 0.025a in the [111] 
direction and there is evidence for the presence of either 
a small quantity of a tetragonal impurity phase, or a 
slight tetragonal distortion. 

Introduction 

Pure zirconia, ZrO2, is monoclinic at room tem- 
perature, tetragonal between ~ 1440 and ~2640 K, and 
cubic up to the melting point at ~2950K.  The 
monoclinic phase is a distortion of the fluorite (CaF 2) 
structure with the Zr atom in seven coordination. In 
both high-temperature phases, the Zr atom assumes 
eight coordination, as in fluorite, but in the tetragonal 
form the O atom is substantially displaced from its ideal 
fluorite 1 1 ~ position. The tetragonal and cubic phases ~,~,~ 
of pure zirconia can be stabilized at room temperature 
by the addition of suitable oxides, namely MgO, CaO, 
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Sc203, Y203 and certain rare-earth oxides. An 
orthorhombic form has also been prepared by quenching 
from high pressure and temperature (Suyama, Ashida 
& Kume, 1985) but this phase will not be considered 
further here. 

The crystal structures of, and mechanisms of the 
transformations between, the monoclinic, tetragonal 
and cubic phases are of considerable technical interest 
since they can be manipulated to provide optimized 
physical and chemical properties of the materials 
fabricated from the stabilized zirconia (Garvie, Han- 
nink & Pascoe, 1975; Roth, 1975; Claussen, Ruhle & 
Heuer, 1984; Fisher, 1986). The so-called partially 
stabilized zirconias (PSZ), which are typically two- 
phase cubic and tetragonal or single-phase tetragonal, 
are of importance for mechanical and structural 
applications. The fully stabilized zirconias (FSZ), which 
are normally single-phase cubic, are of interest for 
heating elements, oxygen sensors and fuel-cell 
applications. 

Crystal structure determinations have been per- 
formed on tetragonal ZrO 2 using X-ray powder 
diffraction intensities collected at 1470 to 2230 K by 
Teufer (1962). Monoclinic ZrO 2 (baddeleyite) has been 
studied at room temperature using X-ray single-crystal 
methods by McCullough & Trueblood (1959) and 
Smith & Newkirk (1965). Cubic Zr(Ca,Y)O2_ x solid 
solutions have been analyzed at various temperatures 
from both X-ray and neutron data by Carter & Roth 
(1968), Steele & Fender (1974), Faber, Mueller & 
Cooper (1978), Morinaga, Cohen & Faber (1979) and 
Horiuchi, Schultz, Leung & Williams (1984). 
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